
36 The Delphi Magazine Issue 62

Careless Memories
Debugging the heap manager

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

I have a confession. Last month’s
article nearly didn’t make it. Not

because of the actual text, you
understand, but because the code
had a bug. I was a little late anyway,
but just as I was tidying up the code
and making my final passes for
grammar, compiles and tests, I got
an Invalid Pointer Operation excep-
tion. The IDE positioned itself at a
call to FreeMem. Urk.

Now, you may have been lucky
and never had this particular error
in Delphi, so let me explain in lay-
man’s terms what it meant. I’d
trashed the heap. I had a memory
overwrite or something that
stomped values the heap manager
was using and now it’s all over. Go
directly to jail. Do not pass Go. Do
not collect £200.

Even if you’ve never had this par-
ticular error, I’m sure you’ve had
that prickly feeling of cold sweat on
your forehead as you suddenly
realize you’re looking at working
way into the night to fix a sudden
bug. I tried that night, but I was too
tired. I sent a message to Our
Esteemed Editor apologizing for
the delay, saying I’d look at it in the
cool calm of my air-conditioned
office the next morning.

Well, it was just as bad then. I
couldn’t see where the problem
was for the life of me. OEE had
replied with a low jab about how
surely TurboPower had lots of
debugging tools to track the bug
down. OK, so I tried CodeWatch
from our new Sleuth QA Suite 2,
with the new heap memory
checking, but unfortunately it
didn’t spot the overwrite or
whatever it was.

In fact it took me a good couple
of hours, off and on, that day to
finally nail it down. I’d like to take
this article to talk about what I
learned about the heap manager in
Delphi 5 in my debugging odyssey,
what structures and algorithms it
uses, and to see what code and
structures I used to finally track
this particular bug down.

Ordinary World
To the casual programmer, the
Delphi 5 heap manager is a black
box. You ask for memory with
GetMem or New, or a call to a Create
constructor, and you get it. When
you finish with that memory, you
give it back with FreeMem, Disposeor
Destroy. If you don’t, you get a
memory leak (which Sleuth Code-
Watch can easily point out to you).
Easy peasy, no worries mate.

It’s when things go wrong with
the heap that you are left with this
nagging feeling that maybe you
should know more.

The first point to note is that the
standard heap manager uses only
one exception: the aforementioned
Invalid Pointer Operation. It’s not
well known that there are actually
14 separate errors that can cause
this exception to be raised and
they all occur when memory is
being freed. If an error occurs, the
standard heap manager merely
raises the one exception and mer-
rily discards the error code. Some-
times, however, as in my case, it
would be nice to know the actual
error code. Maybe it would trigger
some ‘ah-ha!’ thought in my mind.

How do we find this error code?
Well, you could use the debugger,
but it’s a bit of a pain to find the
right place to place a breakpoint
and there’s a much easier way.

In Delphi 2, Borland encapsu-
lated the heap manager in such a
way that you can easily replace it.
Indeed, they give you a replace-
ment heap manager in the box: the
ShareMem unit. ShareMem is an inter-
face to a DLL that implements a
heap manager. If you use Delphi
DLLs with your Delphi application
then all modules will have their
own heap managers. Apart from
one major case, if you’re careful
about making sure you free a
memory block in the same module
(ie EXE or DLL) that you allocated
it in, you can go on your merry way
without using ShareMem. The excep-
tion is if you pass long strings

between modules. Here, you have
to be extremely careful about what
you do: the compiler will, at the
drop of a hat, reallocate the
memory held by a long string and,
if the reallocation occurs in a dif-
ferent module to the original, you
can say bye-bye to your applica-
tion. Borland thus provided a heap
manager in a DLL (BORLNDMM.DLL)
that all modules can use: they
ignore their own heap managers
and switch to the shared one,
using the ShareMem unit, and live
together happily ever after.

(Actually, we came across
another type that can cause disas-
trous memory problems between
DLL and EXE during some debug-
ging at TurboPower. The books
and the help all say be wary of long
strings, but sometimes the long
strings are hidden, in variants, for
example. And that’s what we had: a
variant containing a long string.)

Playing With Uranium
So how do you replace the heap
manager? (I know I seem to have
gone off the beaten track with
respect to my original problem,
but bear with me.) You have to
write three routines: one that gets
a memory block, one that frees a
memory block and one that reallo-
cates a memory block. Once
you’ve written those to follow the
correct interface, you save the cur-
rent heap manager by calling Get-
MemoryManager, and replace it with
yours by calling SetMemoryManager.
These two routines use a simple
record of routine pointers known
as TMemoryManager. (Roberto De
Marini talked about this briefly in
Issue 19, in Tips & Tricks.)

October 2000 The Delphi Magazine 37

The get memory routine you
write is a function that accepts an
integer Sizeparameter and returns
a pointer to a block of bytes that is
that size, or if it can’t allocate such
a block, a nil pointer. The free
memory routine is a function that
accepts a pointer to a memory
block and returns an integer error
code to say whether the block was
freed properly (error code 0) or
not (any other value). It is this
error code that the standard heap
manager throws away and that we
want. (Actually it’s a bit of a stretch
to say the heap manager ‘throws it
away’, since it does store it in an
internal variable, albeit inaccessi-
ble to the outside world.) The
re-allocate memory routine is a
function that takes a pointer
parameter and an integer Size
parameter and returns a pointer to
the newly resized memory block
(or nil if it couldn’t do it).

Let’s write the minimal heap
manager replacement. In fact, it
will be so minimal that it can act as
a template for much of the other
work we’re going to do. Listing 1
has the complete code for the
AAHpMin unit. If you look at it, all it
does is to implement the three
replacement routines such that
they merely call the original heap
manager. If you write a small appli-
cation and add AAHpMin as the first
unit in the project’s uses clause (it
should never be used anywhere
else) you can run it without any
problems whatsoever: it acts just
as if the AAHpMin unit wasn’t even
there.

Now, though, let’s make a copy
of the AAHpMin unit and call it
AAHpDbug. We’ll be constantly build-
ing up this AAHpDbug unit in this arti-
cle so that it can act as a complete
heap debugger. We’ll make one
change to the AAFreeMem function: if
the return value from the call to the
original function is non-zero, we’ll
log it to a heap debug log file.

Why not raise an exception? I
can hear at least one of my readers
ask. Why not indeed? Well, the
problem is that raising an excep-
tion will cause at least one memory
allocation, maybe more (the
parameter to Exception.Create is a
long string, remember), and maybe
even a memory block deallocation.
Since we’re reporting a problem in
the heap, we may get ourselves
into a fairly nasty recursion here as
we try and report some heap trash-
ing when we are trying to report
some heap trashing as we are
trying... Well, you get the picture.
Much safer to assume that the
heap is highly unstable at this
point and not make any allocations

at all. Hence, I’ve been very careful
about making sure that I don’t
make any allocations whilst I’m
reporting a heap problem. In fact,
as you’ll see, we shall have to be
very careful about using the heap
manager when we’re debugging
the heap manager: one of my early
experiments resulted in a long
string being allocated to report an
allocation (I was logging all gets
and frees of memory). Massive
recursion then set in, with the
usual results.

Listing 2 shows the first iteration
of the heap debug unit. As you can
see, it has a set of hard-coded
short strings describing each of
the possible heap corruption
errors (I lifted this directly out of
GETMEM.INC, which is shipped
with Delphi 5 Enterprise).

Using AAHpDbug with my problem
app gave me a log file saying that
the previous block before a block I
was freeing is bad. Ohhh-kayyy...

➤ Listing 1: The minimal heap
manager replacement. function HeapErrorMsg(aErrorCode : integer) : shortstring;

begin
case aErrorCode of

1 : Result := 'operating system returned an error on release';
2 : Result := 'operating system returned an error on decommit';
3 : Result := 'list of committed blocks looks bad';
4,5,6 : Result := 'filler block is bad';
7 : Result := 'current allocation zone is bad';
8 : Result := 'couldn''t initialize';
9 : Result := 'used block looks bad (invalid pointer? double free?)';
10 : Result := 'prev block before a used block is bad';
11 : Result := 'next block after a used block is bad';
12 : Result := 'free list is bad';
13 : Result := 'free block is bad';
14 : Result := 'free list doesn''t correspond to blocks marked free';

else
Result := 'unknown error message';

end;
end;
function OurFreeMem(P : pointer) : integer;
begin
Result := OrigHeap.FreeMem(P);
if (Result <> 0) then
WriteLogFreeErr(HeapErrorMsg(Result));

end;

➤ Listing 2: Getting the error
code from a failed FreeMem.

unit AAHpMin;
{WARNING: this unit *must* appear first in your project's
uses list.}
interface
implementation
uses
Windows; // OK to use Windows unit: it allocates no memory

var
OrigHeap : TMemoryManager;
OurHeap : TMemoryManager;

function OurGetMem(Size : integer) : pointer;
begin
Result := OrigHeap.GetMem(Size);

end;
function OurFreeMem(P : pointer) : integer;
begin
Result := OrigHeap.FreeMem(P);

end;
function OurReallocMem(P : pointer; Size : integer) :
pointer;

begin

Result := OrigHeap.ReallocMem(P, Size)
end;
procedure InitializeUnit;
begin
GetMemoryManager(OrigHeap); {get the original manager}
{set up our heap manager}
OurHeap.GetMem := OurGetMem;
OurHeap.FreeMem := OurFreeMem;
OurHeap.ReallocMem := OurReallocMem;
SetMemoryManager(OurHeap); {replace heap mgr with ours}

end;
procedure FinalizeUnit;
begin
SetMemoryManager(OrigHeap); {restore original manager}

end;
initialization
InitializeUnit;

finalization
FinalizeUnit;

end.

38 The Delphi Magazine Issue 62

Something I Should Know?
To understand this we need to
delve some more into how Delphi
manages blocks. Astute readers
might have noticed something
peculiar. Although we specify a
Size parameter when we allocate a
block of memory, we don’t specify
one when we deallocate a block.
How does the heap manager ‘know’
how big a memory block is?

Enter memory alignment, heap
granularity and the Size/Flags
value. Time for some more theory.
The first point to take in is that the
Delphi heap manager always
returns a memory block that is
aligned on a 4-byte boundary.
What that means is that when you
call GetMem, or any other primitive
routine that allocates memory, the
address returned to you is divisi-
ble by 4 (if you look at the address
in binary the lower two bits are
clear, or if you look at it in hex the
least significant digit is 0, 4, 8, or C).
So what? Well, alignment plays a
great part in efficiency: if you have
four-byte variables (longints,
pointers etc) aligned on a four-byte
boundary using them is much
more efficient than not. This is a
consequence of the PC hardware.

And heap granularity? Well, if
memory blocks are returned on a
four-byte boundary then it makes
sense to make memory blocks mul-
tiples of four bytes. This makes it
much easier to maintain the align-
ment. And so that’s what the heap
manager does: it rounds up each
memory allocation to the next four
bytes. Hence, if you allocate from
one to four bytes, you’ll get four
bytes, from five to eight bytes,
eight bytes, from nine to twelve
bytes, twelve bytes, and so on.
(Those of you who’ve investigated
the heap manager before may be
jumping up and down at this point,
but bear with me.)

This is all very well, but again the
problem occurs in that the heap
manager doesn’t know the size of a
memory block. So it makes sure it
can work out the memory block
size: it adds an extra four bytes to
your allocation and uses it as a long
integer value to store the size of
the memory block. This value is
placed just before the memory

block that’s returned by the call to
GetMem. In other words, if you allo-
cate a memory block and get the
pointer value X, the longint at
address X-4 is the size of the block.

Well, nearly. If you actually look
at this longint value for an alloca-
tion, you may see a value that
seems wrong: it may be odd, or it
may not be a multiple of four.
What’s going on? Is Julian losing it?
Think of it like this: the size value is
going to be a positive number
that’s also a multiple of four. Con-
sidering it as a binary value, three
bits will always be clear: the most
significant bit (otherwise the
longint value will be negative) and
the two least significant bits (oth-
erwise the value won’t be a multi-
ple of four). The heap manager
makes use of these three bits as
flags for certain conditions. Hence
the longint value is known as the
Size/Flags value.

Bit 0 (the least significant bit),
when set, signifies that the previ-
ous memory block to this one has
been freed and so, if this one is
freed, the two blocks can be
coalesced into one at that time. Bit
1, when set, signifies that this block
is in use (ie it has been allocated
but not freed). This bit is used to
check that a memory block is not
freed twice (which, if not checked
for, could cause a major heap cor-
ruption problem). Bit 31 (the most
significant bit), when set, is used
internally to designate a filler block
that, due to the flow of allocations
and frees, is too small to be used.

The interesting bits are bit 0 and
1. Bit 1 is set when you allocate a
memory block and is cleared when
you free it. This helps track down
double-frees: when you manage to
write code that frees a pointer
twice. Bit 0 will come on and off as
you use your memory block,
depending on the ebb and flow of
allocations in the heap manager. If
the previous block to this one is
freed, the heap manager sets the
flag on for this next block, if the
previous block is allocated again,
the heap manager makes sure that
the flag is cleared.

Assume the heap manager is
about to free a block. The flag in
the Size/Flags value for this block

indicates that the previous block is
free, therefore the two can be
coalesced. But how does the heap
manager find the previous block? It
may be 20 bytes in size or 200
bytes: the memory block we’re
freeing doesn’t know.

To Whom It May Concern
Let’s discuss what happens when a
block is freed and both the previ-
ous and next blocks are being
used. Ideally, we would like to be
able to reuse this block in the
future (we don’t want to not reuse
it, otherwise we’d run out of
memory pretty quickly). The heap
manager therefore adds the block
to a free list, a doubly linked list of
blocks that can be reused. When
the user wants another memory
block, the heap manager can
quickly walk the free list looking
for a block of the right size. Since
it’s a doubly linked list, the heap
manager must use part of the
memory block to store a forward
and backward link. The heap man-
ager must also store the length of
the block. This means the heap
manager requires the memory
block to be at least 12 bytes in size
(two pointers for the links and a
longint size). When a block is
deleted, the heap manager sets up
these twelve bytes at the begin-
ning of the block. Listing 3 shows
the definition of this record struc-
ture: the TFree record. The rest of
the memory block is assumed to
follow after this structure.

Thus, not only does the heap
manager allocate memory blocks
such that they are aligned on a
four-byte boundary, and that they
are a multiple of four bytes in size,
it also makes sure the memory
blocks are at least 12 bytes in size,
with four bytes used for the Size/
Flags value. So you can see if you
want to allocate from one to eight
bytes, you actually get an eight-
byte block, with the previous four
bytes being the Size/Flags value.
Allocating such a small amount
will always reduce the amount of
usable memory by 12 bytes.

However, even with the TFree
record being overlaid on the first
twelve bytes of our memory block,
we certainly haven’t helped the

40 The Delphi Magazine Issue 62

next block along to find this TFree
record when it needs to. This is
where it gets clever. Let’s free a
memory block and suppose the
flag for it states that the previous
block is free, so we need to
coalesce. Let’s assume the previ-
ous memory block was exactly 12
bytes in size. This means that the
longint value before our Size/Flags
value is the size of the previous
memory block (that is, 12). The
previous memory block can’t be
any smaller than this, of course,
but it could be larger, say 16 bytes
or bigger. What the heap manager
does in that case is use the final
four bytes of the memory block as
a longint size value. So, no matter
how big the previous freed block
may be, the longint prior to our
memory block is the size of this
previous block.

Here’s what the memory looks
like with a previous block of 12
bytes:

Previous block:
Next pointer
Prev pointer
Size (=12)

Our block:
Size/Flags
..memory..

And here it is if the previous block
is larger than 12 bytes:

Previous block:
Next pointer
Prev pointer
Size (>=16)
..memory..
Size (>=16)

Our block:
Size/Flags
..memory..

So, in all cases, we can, if required,
find the previous block. Note that it
goes without saying that we know
where the next block is because we
know the size of our own block.

By the way: the Delphi heap
manager doesn’t have just one free
list, as I intimated just now. It has a
free list to store blocks of 12 bytes,
a free list for blocks of 16 bytes, for
20 bytes, and so on up to 4,096
bytes. It then has a free list for
larger blocks. The reason for this is
that the majority of the objects we
create and memory we allocate are
less than 4Kb in size (we’ll see how
to show this for your applications
in a moment). By having separate
free lists for different block sizes,
the heap manager makes some
impressive speed improvements
for these small blocks. Of course, if
the heap manager coalesces
memory blocks on freeing, it will
have to move blocks out of one free
list into another.

Lonely In Your Nightmare
So, knowing all this, what does my
error code (Previous Free Block is
Bad) mean? The heap manager
reads the size of the previous block
(it’s the longint before our block).
If this is less than 12 (the minimum
size of a memory block, remember)
or it’s not a multiple of four, then
the heap manager assumes that
the previous block is bad (some-
thing has trashed that longint).
Otherwise it finds and reads the
TFree record for the previous
block. If the size as given by the
TFree is different from the size just
read, then obviously something is
corrupted again (either the first or
second size read is corrupt).

The heap manager was therefore
telling me that I’d trashed the pre-
vious block somehow. Or I’d
trashed my own Size/Flags value so
that it indicated that the previous
block was freed when it wasn’t. To
me it looked like a memory over-
write before the beginning of the
block I was freeing. An off-by-
minus-one error, perhaps.

Memory overwrites are the bane
of any professional programmer.
They have this very annoying habit
of occurring at point X and having
an effect at point Y, many lines of
code later. Debugging them can be
a nightmare.

How can we help this debugging
process? Professional debugging
products that test for memory

overwrites use the principle of
guard bytes. When the user allo-
cates X bytes, by all means give
him X bytes, but in fact allocate
X+2Y bytes with Y bytes before the
user’s memory block and Y bytes
after. These two chunks of Y bytes
are called guard blocks and are ini-
tialized to some value (say, zero,
but more often a value like $CC) and
their only purpose is to draw out
the memory overwrites so the bug
doesn’t trash the internal heap
structures. When the block is
freed, the debugger checks to see if
the guard bytes have been altered.

Well, Algorithms Alfresco is noth-
ing if not professional, so let’s alter
our debugging heap manager to
use this principle. What we’ll do is
construct a memory block that
looks like this:

Size/Flags
User block size
16 bytes of $CC
..user memory..
16 bytes of $CC

Why the extra user block size?
Well, the Size/Flags value contains
the size of the block rounded up to
the nearest 4 bytes. We could, for
instance, allocate thirteen bytes
and write to the fourteenth with-
out any error at all, since the heap
manager actually gives us sixteen
bytes in our block. So, to be
ultra-professional, we should
check that the user of the block
doesn’t write to these hidden
bytes at the end of his allocation.
Hence we save the size of the
requested block, rather than using
the rounded size.

This debugging change requires
us to write some extra routines.
Although some of these routines
are in the SysUtils unit, we cannot
use them because SysUtils allo-
cates some memory in its initializa-
tion section prior to us gaining
control. This is one of the intrigu-
ing problems of writing heap
managers and debuggers: you
can’t use other units that may
cause SysUtils to be loaded.

Listing 4 shows the heap
debugger unit AAHpDbug with these
changes. Note how we increase the
allocation in the GetMem to allow for

➤ Listing 3: The TFree record.

type
PFree = ^TFree;
TFree = packed record
prev: PFree;
next: PFree;
size: Integer;

end;

October 2000 The Delphi Magazine 41

our guard blocks, and in the
FreeMem, how we check the guard
blocks to be unaltered. To make
the whole thing more flexible, we
read the number of bytes in the
guard blocks from the registry.
That way we can test with 4 extra
bytes either side, or go to a maxi-
mum of 32 bytes (the routine that
reads this information can’t really
pop up a dialog box if the number is
in error, so it takes the view that
the value should be any multiple of
4 between 4 and 32 and for any
other value it’ll use the default 16).

Notice also that at this stage, I
decided to write the ReallocMem
routine as a call to GetMem, copy the
data over, and then a call to
FreeMem. This gives the heap
debugger the greatest control over
the allocation/free process, and
although we could get away with
not doing it this time, in the next
iteration of the debugger we will be
forced to do it this way.

Actually, despite the fact that
this all seems very logical and rea-
sonable, there was another prob-
lem that hit me between the eyes.
The user can trip the debugger up

by passing a bad pointer (maybe it
was corrupted). As soon as the
debugger tries to dereference it to
look at the guard bytes, for exam-
ple, the debugger will cause an
Access Violation. This led me to
add pointer tracking: for every suc-
cessful GetMem, I saved the pointer
returned in an array; for every
FreeMem I checked that the pointer
being freed existed in the allocated
pointer array and, if so, removed it.
This solved a bunch of problems.

So, what did this amendment
show in practice? Well, the bug
didn’t show up for one (hooray!)
but no guard blocks were overwrit-
ten (rats!). All I’d done was hide the
bug: it’s still there but doesn’t have
the effect I assumed.

Too Much Information
What now? All I’ve shown so far is
that it’s not a memory overwrite.
There’s one more possibility: per-
haps I’m freeing a pointer and then
writing to it afterwards. On looking
through my code, it certainly was
not obvious. So, how can we check
for this? As soon as we free a block,
the heap manager writes stuff all
over it for its own purposes.

The answer is to use a technique
called delayed freeing. We create a

queue of pointers in the heap
debugger. When the user wants to
free a memory block, instead of
deallocating it we merely add the
pointer to the queue. Once the
number of items in the queue
grows to a preset limit, we start
deallocating the memory blocks at
the head of the queue as we add
new ones to the tail. Memory will
get recycled, sure, but it takes a
while: blocks get put in limbo for a
time. To check for writing to a
block after freeing it, all we do is fill
the block with $CC bytes when the
user frees the block and we add it
to the delay queue, and then verify
that the block still contains $CC
bytes when we actually free it once
it reaches the head of the queue.

It sounds simple enough, but
there are some ramifications we
should address. We would like the
length of the queue to be defined
through the registry for a start. But
then that would imply that the
queue is a dynamic structure
allocated from the heap. Uh, no, we
can’t do that: we are the heap
manager. Instead let’s use the Win-
dows heap of the process to allo-
cate the queue. Every process has
a Windows heap allocated to it by
the system when the process

procedure CheckGuardBlocks(P : pointer);
var
Mem : PChar;
Size : integer;
RoundedSize : integer;
SecondSize : integer;

begin
{get the address of the first guard block, and verify that
it hasn't been changed by an overwrite}

Mem := P;
dec(Mem, GuardSize);
if not aaCompareMem(Mem, GuardSize, $CC) then
WriteLogOverwrite(P, 1, Mem, GuardSize);

{get size of user's memory block and work out address and
size of 2nd guard block; verify it hasn't been changed}
dec(Mem, sizeof(integer));
Size := PInteger(Mem)^;
inc(Mem, sizeof(integer) + GuardSize + Size);
RoundedSize := (Size + 3) and $7FFFFFFC;
SecondSize := GuardSize + (RoundedSize - Size);
if not aaCompareMem(Mem, SecondSize, $CC) then
WriteLogOverwrite(P, 0, Mem, GuardSize);

end;
function OurGetMem(Size : integer) : pointer;
type PInteger = ^integer;
var RoundedSize : integer;
begin
{we have to add size of our guard blocks and an extra size
value to size to allocate; round up to nearest 4 bytes}
RoundedSize := (Size + (2 * GuardSize) + sizeof(integer) +
3) and $7FFFFFFC;

Result := OrigHeap.GetMem(RoundedSize); {get the memory}
{providing some memory was allocated...}
if (Result <> nil) then begin
{save the original size at the start of the block}
PInteger(Result)^ := Size;
{advance the result pointer over this size value}
inc(PChar(Result), sizeof(integer));
{fill remainder of memory block with $CC}
FillChar(Result^, RoundedSize - sizeof(integer), $CC);
{return the address of the memory block in between the
two guard blocks}

inc(PChar(Result), GuardSize);

end;
end;
function OurFreeMem(P : pointer) : integer;
var BlockSize : integer;
begin
{check that the user hasn't overwritten the guard bytes}
CheckGuardBlocks(P);
{check that the memory block itself wasn't overwritten}
BlockSize := PInteger(PChar(P) - GuardSize -
sizeof(integer))^;

if not aaCompareMem(P, BlockSize, $CC) then
WriteLogOverwrite(P, 2, P, BlockSize);

{move to the size value stored in the block: it is this
pointer that will get freed}

dec(PChar(P), GuardSize + sizeof(integer));
Result := OrigHeap.FreeMem(P); {free the memory}
if (Result <> 0) then
WriteLogFreeErr(HeapErrorMsg(Result));

end;
function OurReallocMem(P: pointer; Size: integer): pointer;
var OrigSize : integer;
begin
if (P = nil) then begin
if (Size <= 0) then
Result := nil

else
Result := OurGetMem(Size);

end else begin
if (Size = 0) then
Result := nil

else begin
Result := OurGetMem(Size);
OrigSize := PInteger(PChar(P) - GuardSize -
sizeof(integer))^;

if (OrigSize < Size) then
Move(P^, Result^, OrigSize)

else
Move(P^, Result^, Size);

end;
OurFreeMem(P);

end;
end;

➤ Listing 4: Debugging with
guard blocks.

42 The Delphi Magazine Issue 62

starts. The heap handle is obtained
by calling GetProcessHeap. So we
can allocate an array of pointers
from that heap to hold the queue.
At the end of the application, we
free everything in the queue and
then free the queue back to the
process’ heap.

Listing 5 shows the FreeMem for
this heap debugger. It’s rather
more involved than before but still
fairly understandable. Notice also
that we use an array of pointers to
hold the queue, but that we make it
a circular queue with head and tail
pointers. This is vastly more effi-
cient than the method used by the
TQueue class (TQueue is one of the
container classes in Delphi’s
CONTNRS unit). If we find a corrupted
freed block, the contents of the
block are written to the log.

So, did it work this time? Yes!
There was one memory block I was
freeing that I was writing to after-
wards. This would trash the heap
manager’s structures that main-
tain the free list and allow for
memory block coalescing. Once I’d
confirmed and seen the problem,
finding the piece of code in error
was much easier. I ran the applica-
tion again and placed a data break-
point on the longint being altered.

From that point, it was a matter of
moments to find the problem.

Of Crime And Passion
However, that happy ending
wasn’t the real end of the story. I
noticed that in using the final ver-
sion of the heap debugger that I
was getting an Access Violation
right at the end of the program.
Worse still, it was happening after
most, if not all, of the exception
handling was closed down. I
groaned inwardly, thinking that my
delay queue code was broken or
my pointer-tracking array was
hosed, and started debugging. This
took some tracking down. For writ-
ing to my heap debug log file I was
using the basic Assign, Append,
writeln and Close routines from
the System unit. They’d been there
for years, all the way from Turbo
Pascal, and since I remembered
how they worked from those hal-
cyon days, I naturally assumed
they didn’t allocate any memory.

Well, I was wrong. Even though
the Assign procedure took a
shortstring parameter for the file
name (I’d already checked that, of
course) the compiler was inserting
some hidden code to allocate a
long string on the heap, to convert
the short string to a long string,
and then to copy the long string as

a PChar to the relevant field in the
TTextRec record for the text file
variable. Why, for heaven’s sake?
It’s a sheer waste of time and effort,
why not just copy the shortstring
over to the field and append a null?
Why this complexity? There was
nothing for it, of course, but to
write my own text file device driver
so that I could have my own Assign
procedure that did it properly.
Except that then I noticed that the
TTextRec record and the magic file
mode constants were now defined
in SysUtils...

New Religion
Having seen how to create a heap
debugger for helping us find heap
memory problems, I’m sure you
will be able to write your own heap
managers. Listing 6, as an example,
ignores the standard Delphi heap
manager completely and instead
uses the Windows heap routines
for memory allocation.

Another possible use for cus-
tomized heap managers is to gen-
erate the distribution of heap
allocations for your application.
How many allocations of 8 bytes
are you making? Of 12 bytes? Of 16
bytes? And so on? The results tend

➤ Listing 5: Using a delay queue.

function OurFreeMem(P : pointer) : integer;
var BlockSize : integer;
begin
{check to see if the pointer exists in our list}
if (P <> nil) and (not RemovePointer(P)) then begin
WriteLogFreeErr(HeapErrorMsg(99)); {not a valid pointer}
Result := 99;

end else begin
if (P <> nil) then begin {add pointer to delay queue}
BlockSize := PInteger(PChar(P) - GuardSize -
sizeof(integer))^;

FillChar(P^, BlockSize, $CC);
end;
DelayQueue[QTail] := P;
QTail := (QTail + 1) mod DelaySize;
{check to see whether we can actually free a pointer}
if (QHead <> QTail) then Result := 0
else begin

P := DelayQueue[QHead]; {pointer at head of queue}
QHead := (QHead + 1) mod DelaySize;
{check that user hasn't overwritten guard bytes}
CheckGuardBlocks(P);
{check that memory block itself wasn't overwritten}
BlockSize := PInteger(PChar(P) - GuardSize -
sizeof(integer))^;

if not aaCompareMem(P, BlockSize, $CC) then
WriteLogOverwrite(P, 2, P, BlockSize);

{move to the size value stored in the block: it is
this pointer that will get freed}

dec(PChar(P), GuardSize + sizeof(integer));
Result := OrigHeap.FreeMem(P); {free the memory}
if (Result <> 0) then
WriteLogFreeErr(HeapErrorMsg(Result));

end;
end;

end;

➤ Listing 6: A heap manager
using a Windows heap.

var HeapHandle : THandle;
function OurGetMem(Size : integer) : pointer;
begin
Result := HeapAlloc(HeapHandle, 0, Size);

end;
function OurFreeMem(P : pointer) : integer;
begin
if HeapFree(HeapHandle, 0, P) then Result := 0
else Result := 1;

end;
function OurReallocMem(P : pointer; Size : integer) :
pointer;

begin
Result := HeapRealloc(HeapHandle, 0, P, Size);

end;
procedure InitializeUnit;

begin
GetMemoryManager(OrigHeap); {get the original manager}
{set up our heap manager}
OurHeap.GetMem := OurGetMem;
OurHeap.FreeMem := OurFreeMem;
OurHeap.ReallocMem := OurReallocMem;
{create a Windows heap}
HeapHandle := HeapCreate(0, 1024*1024, 0);
if (longint(HeapHandle) <> 0) then
SetMemoryManager(OurHeap); {replace heap mgr with ours}

end;
procedure FinalizeUnit;
begin
SetMemoryManager(OrigHeap); {restore original manager}
if (longint(HeapHandle) <> 0) then
HeapDestroy(HeapHandle); {dispose of the Win32 heap}

end;

October 2000 The Delphi Magazine 43

to be very interesting. For a stan-
dard, fairly simple, UI application,
the vast majority of heap alloca-
tions are all less than about 128
bytes. You can therefore easily
optimize your heap manager
replacement by making sure that

allocations of less than 128 bytes
come off simple free lists, one per
allocation size. Ignore the coalesc-
ing action of the standard Delphi
heap manager: on a free, you add
the block to its free list, on an allo-
cate you get the top free block off
the relevant free list. If there are no
free blocks in that list, then allo-
cate off the Delphi heap manager.

Listing 7 shows a heap manager
that shows the distribution of
memory blocks being allocated in
your application. It’s also fairly
easy to modify it to log every
memory allocation and free.

Another good debugging heap
manager is one that stresses your
application by generating out of
memory errors. Generally the only

➤ Listing 7: Calculating the
allocation size distribution.

procedure UpdateBin(Size : integer);
var
RoundedSize : integer;

begin
{calculate the rounded size of the requested allocation...
-actual size rounded up to nearest aaHeapAlign bytes (4)}
RoundedSize := (Size + aaHeapAlign - 1) and
(not (integer(aaHeapAlign) - 1));

{-if result is less than minimum round up to minimum}
if (RoundedSize < aaHeapMinAlloc) then
RoundedSize := aaHeapMinAlloc

{-if greater than maximum round down to maximum plus 4 (in
other words, this allocation is for the 'other' bin)}

else if (RoundedSize > aaHeapMaxAlloc) then
RoundedSize := aaHeapMaxAlloc + aaHeapAlign;

{increment the count in the relevant bin}
InterlockedIncrement(
aaHeapBins[RoundedSize div aaHeapAlign]);

end;
function OurGetMem(Size : integer) : pointer;
begin
UpdateBin(Size); {update the relevant bin}
Result := OrigHeap.GetMem(Size); {allocate the memory}

end;
function OurReallocMem(P: pointer; Size: integer): pointer;
begin
{update relevant bin; NB: Size=0 is same as a FreeMem}
if (Size <> 0) then
UpdateBin(Size);

Result := OrigHeap.ReallocMem(P, Size) {do the work}

end;
procedure FinalizeUnit;
var
Log : System.Text;
i : integer;
LogNameZ : array [0..255] of char;
LogName : shortstring;

begin
SetMemoryManager(OrigHeap); {restore original manager}
{get the log name}
aaReadRegistryString(LogNameZ, 256,
'software\AlgorithmsAlfresco\AAHpDist', 'LogName',
'C:\HEAPDIST.LOG');

LogName := aaStrPas(LogNameZ);
{write out data to log}
aaLogOpen(Log, LogName);
try
writeln(Log, 'Heap Allocation Distribution');
writeln(Log, '----------------------------');
writeln(Log);
writeln(Log, 'Size':5, 'Count':10);
for i := low(aaHeapBins) to pred(high(aaHeapBins)) do
writeln(Log, (i * aaHeapAlign):5, aaHeapBins[i]:10);

writeln(Log, 'Other':5,
aaHeapBins[high(aaHeapBins)]:10);

finally
aaLogClose(Log);

end;
end;

44 The Delphi Magazine Issue 62

time you would get an out of
memory error on your own
machine would be when you have
runaway recursion allocating
memory. This would be a race
between an out of stack error and
an out of memory error. On cus-
tomers’ machines (they always
seem to be running Windows 95 in
16Mb of RAM) it may occur more
often. Actually, this heap debugger
is simple to implement: at some
signal from the program (a flag, a
certain number of allocations, a
maximum total size of allocations)
your replacement GetMem routine
returns nil. That’s all. Sit back and
see how your code behaves...

For those of you who are using
the ShareMem unit, the good news is

that you can still debug and
replace the heap. It takes a little
more doing because you have to
create a DLL to put your heap
manager in (this will replace
BORLNDMM.DLL) and then write an
interface unit for it (to replace
ShareMem) but it’s fairly simple rote
programming.

Come Undone
With that I must close this particu-
lar article. We’ve come a long way,
although the algorithmic and data
structure parts were all pretty
easy. We’ve seen how to replace
the heap manager, and used this
technique to develop a debugging
heap manager to help us pinpoint
heap errors. We’ve also seen a few

ideas on how to write our own
heap managers with customized,
specialized behaviors. Have fun
tracking your memory overwrites,
generating out of memory excep-
tions and checking your memory
allocation distributions!

Julian Bucknall has heaps of
memories of Roger Vadim’s film
Barbarella starring Jane Fonda.
One of the other characters was
of course Duran. Email Julian at
julianb@turbopower.com. The
code that accompanies this article
is freeware and can be used as-is
in your own applications.

© Julian M Bucknall, 2000

	Ordinary World
	was for the life of me. OEE had right place to place a breakpoint Playing
	Something I Should Know?
	To Whom It May Concern
	Lonely In Your Nightmare
	Too Much Information
	Of Crime And Passion
	New Religion
	Come Undone

